Microwave Probing of Protein Interactions

Kimberly Taylor
Daniel van der Weide
University of Wisconsin-Madison
& vdW Design, Middleton WI USA

• • Overview

- Dielectric properties of biological macromolecules
- Slot antenna system
- Experimental results
 - Protein unfolding/refolding thermodynamics
 - Ligand binding
- Conclusions

Objective

- Detection of changes in conformation of biological macromolecules in solution is central to biodetection for security
 - Folding/unfolding (protein)
 - Association, hydridization
 - Ligand binding
 - Channel/pore activity
- Applications for ultrasensitive detection
 - Monitoring water supplies
 - Monitoring air quality
 - Monitoring surfaces, package contents for toxins

Field-deployable ultrasensitive biodetection is now possible in chip format

Conventional methods of detection are optical, thermal or mechanical

- Spectroscopic
 - UV/VIS, circular dichroism
 - Fluorescence, NMR
- Calorimetric
 - Different scanning, isothermal titration
- Other
 - Analytical ultracentrifugation
 - Electrophoresis
 - Surface plasmon resonance (SPR)

Dielectric dispersion enables ultrasensitive electrical detection

 Permittivity (ε): measure of polarization of a material

$$\mathbf{P} = [\varepsilon(\omega) - 1]\varepsilon_0 \mathbf{E}$$
$$\varepsilon(\omega) = \varepsilon'(\omega) - j\varepsilon''(\omega)$$

• • Dielectric dispersion

- At low frequency, dipoles attempt to rotate with external field
- At higher frequency, dipoles can no longer keep pace with field
- Resonant frequency: frequency at which ϵ'' reaches a local maximum
- For proteins, f_r is proportional to size

$$f_r = \frac{\omega_r}{2\pi} = \frac{kT}{8\pi^2 \eta r^3}$$

Dipole sources in biological macromolecules

- Protein: backbone and charged or polar residues
- DNA/RNA: sugar, phosphate groups, associated charges
- Lipids: charged or polar head group; interfacial effects with hydrophobic tails
- Dispersion from these macromolecules enhanced by presence of water

Dielectric response of proteins

Dielectric response of proteins

- Low net dipole moment
- \circ $\epsilon'_r \sim 2-20$
- β-dispersion
 - Broad orientational transition below 100 MHz
 - Frequency is inversely proportional to molecular volume

Nucleic acids (RNA, DNA)

- Sugar, phosphate groups in single-stranded
- No net dipole moment when double-stranded

Dielectric dispersion of water

- Bulk water undergoes wide dispersion centered at 19.2 GHz
- Water bound to macromolecule undergoes dispersion at lower frequency
- Bound water can be used as reporter for macromolecular conformational change

Resonant antennas, such as slots, enable microwave detection

- Common antenna type in rf/microwave regime
- Slot length approx. equal to $\lambda_{resonant}$
- Fed by coaxial cable
- Attached to fused quartz cuvette to allow dual dielectric and UV/VIS measurements

Experimental setup enables simultaneous microwave and optical detection

Dielectric response vs. temperature enables Tm extraction

Protein unfolding/refolding studies

- Test system: unfolding/refolding of bovine pancreatic ribonuclease (RNase A)
- Three series of experiments:
 - Concentration series (19 pM 680 μM)
 - pH series (pH 2.5 5.0)
 - \bullet Power series (-35 to 5 dBm; 18 μW to 1.8 mW)

Concentration series shows ultrasensitive pM detection

- Little variation in midpoint temperature (T_m) with concentration
- T_m from UV/VIS equal with error with and without microwave power
- T_m from VNA measurements is lower and more noisy because of fixture variations

	Average T _m (°C)	
UV/VIS alone	53.59 ± 1.00	
UV/VIS with VNA	54.60 ± 1.76	
VNA	51.76 ± 3.08	

pH series results compare well with literature results

Power series shows no effect of microwaves on protein

- No evidence of increasing stabilization at low power
- T_m measured by UV/VIS in presence of microwave power slightly higher than T_m from UV/VIS alone

	Av. T _m (°C)
UV/VIS alone	50.66 ± 0.50
UV/VIS with VNA	51.23 ± 0.37
VNA	51.98 ± 2.82

Summary of protein unfolding results

- Results from VNA measurements parallel those from UV/VIS absorbance
 - Similar midpoint temperature (usually 1-3 °C lower)
 - Similar response to pH
 - No evidence of protein destabilization at low concentration
 - Unfolding/refolding curves measured to 19 pM
 - No evidence of protein destabilization at low power

Methods: Ligand binding

- Conventional methods require labelling or specialized equipment
 - Radio-labelling
 - Fluorescence or absorbance
 - Surface plasmon resonance
 - Isothermal titration calorimetry
- Idea: use slot antenna to deliver microwave power in range 10-20 GHz

Estrogen receptor β

- o Target tissues:
 - Male and female reproductive systems
 - Heart
 - Bone
- Binds DNA upon ligand binding

PDB code 1qkm

Fluorescence polarization

- Beacon: exploit tumbling rate of small ligand
 - Unbound: ligandigand tumbles quickly
 - Bound: ligand tumbles slowly
- Ligand: fluormone (fluorescein-labelled estradiol)

Single-Site Binding Model Receptor10 [......

Single-Site Binding Model

When 50% of ligand is bound:

$$B = \lfloor L_{free} \rfloor = \lfloor L_{tot} \rfloor / 2 = \lfloor R \cdot L \rfloor$$

$$K_{1/2} = \frac{\lfloor L_{free} \rfloor R_{free} \rfloor}{\lceil R \cdot L \rceil} = \lfloor R_{tot} \rfloor_{50\% \text{binding}} - \lfloor L_{tot} \rfloor / 2$$

$$[R_{tot}]_{50\%} = 5.25 \text{ nM}$$

 $[L_{tot}] = 0.5 \text{ nM}$
 $K_d = 5 \text{ nM}$

FP: ER-β/Fluormone binding

Combined setup can be reduced to chip scale

Fluormone binding results correlate with optical results

Source	K _d (nM)
Beacon	5.7
Peak 5 (11.75 GHz)	6.2
Peak 26 (18.66 GHz)	5.9

Estradiol vs. fluormone binding show effects of fluorescent label

Ligand	K _d (nM)	RBA
Estradiol	2.2	1
Fluormone	21.6	9.8

RBA = relative binding affinity

• • Summary: Ligand binding

- Slot antenna system can be used to detect ligand binding
 - Results from VNA compare well to results from Beacon
 - Binding of unlabelled ligands can be detected
 - Microwave power does not perturb the binding

Conclusions

- Slot antenna system can be used for simultaneous dielectric and optical observations of biological macromolecules
 - Unfolding/refolding of small globular protein
 - Receptor-ligand binding
 - Sensitive to very low concentrations
 - Unfolding or binding is not affected by microwave power under the conditions used

Field-deployable ultrasensitive biodetection is now possible in chip format

• • Acknowledgements

- Antenna fabrication: Alan Bettermann, Steve Limbach, Luke Palmer, John Peck (van der Weide laboratory)
- Equipment and reagents: PanVera Corporation (Madison, WI)
- o Support:
 - Army Research Office
 - Office of Naval Research
 - NIH Molecular Biophysics Training Grant